

QWIP FPA in STRV-1d MISSION

Presented at the QWIP 2000 Workshop July 27-29, 2000 Dana Point, California, USA

James T. Kenny and Harold R. Pollock

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

OBJECTIVES

- Demonstrate and assess QWIP FPA uniformity, stability, and repeatability in a space environment
 - Spatial non-uniformity
 - Photo current and dark current
 - Instability
 - Mean photo current, dark current over experiment cycle
 - Non-repeatability
 - Mean dark current
 - Mean responsivity
- Demonstrate QWIP radiation tolerance using QWIP diodes by tracking changes in responsivity.

WHY QWIP

- QWIP complements and extends HgCdTe sensor technology.
- QWIP enables fabrication of large arrays for strategic surveillance.
- QWIP provides long term stability of Responsivity.
- QWIP operates at wavelength longer than 15μ at 40° K.

MISSION

- Primary Mission requirements were:
 - minimum of one year in-space operation, and
 - high proton and electron radiation exposure.

- STRV-1 Mission launches to a geosynchronous transfer orbit (GTO)
 - 620 km by 36000 km at 7.5 degree inclination.
 - provides four transitions through proton and electron belts per orbit.
 - One year mission with potential for extension..

DEVELOPMENT GUIDELINES

- Document design, test and operational requirements.
 - Mil-Std 1540 "Test Requirements for Space Vehicles"
 - "Protoflight" requirements tailored to QWIP mission.
 - DOD-Hdbk-343 "Design, Construction, and Testing Requirements for One of a Kind Space Equipment"
 - Class B requirements tailored to QWIP Mission.
 - Mil-Std-1541A "Electromagnetic Compatibility Requirements for Space Systems"
 - Interfaces negotiated and documented with Spacecraft contractor.
 - Interface Control Document for mechanical, thermal, environmental, power, and electrical interfaces.
 - Software Interface Control Document for spacecraft commanding, data format, and data handling.
- Design and Test Requirements
 - 60 requirements allocated in ICD by spacecraft.
 - 22 requirements derived at JPL.

EMI AND RADIATION DESIGN

EMI Design

- Radiated and conducted emissions and susceptibility.
- Radiated susceptibility to 40 V/m fields at 2269.5 and 2288.5 MHz.

EMI Test

- Measured radiated and conducted emissions during operation.
- Radiated hardware during operation.

Mother chip is 1.8 mm x 2.2 mm and RADFET is about 1mm x 1 mm.

• Radiation Design

- Electronic parts radiation tolerant to 50 Krads or greater.
- Support electronics shielded.
- Data storage in DRAM used triple storage and majority vote.

THERMAL DESIGN AND TEST

• Thermal Design

- -40°C and +60°C (nonoperating or survival limits).
- -30°C and +50°C (operating limits).

• Thermal Test

- Completed four temperature cycles in GN2 chamber after fixes validated.
- Hot and cold starts, and successful operations at hot, cold and ambient temperature verified.

Thermal-Balance

 Validated JPL thermal model for flight predicts

DYNAMIC DESIGN AND TEST

• Dynamic Design

- Random vibration spectrum developed from spacecraft test response data.
- Acoustic spectrum derived from Airane 5 Handbook.

• Dynamic Test

- Electronics Chassis subjected to random vibration only.
- IDA mounted to MFS Panel subjected to acoustic and random vibration.
- Random vib-ed in 3-axes, 60 seconds/axis

EXPERIMENT ARCHITECTURE

- The QWIP Experiment has five major subsystems
 - Integrated Dewar Assembly
 - Cryocooler Assembly
 - Electronics Assembly

- Blackbody Assembly
- Structural/Thermal Control

INTEGRATED DEWAR AND BLACKBODY

Dewar

- Hermetically sealed dewar (minimizes contamination)
- Cold shield (minimizes non-blackbody flux on FPA)

Focal Plane

Peak response

 11.0 ± 0.2 microns

Operating Temperature

55 Kelvin

Array Format

128 x 128

- NEΔT @ 380 K blackbody

1.0 K

Integration Time

3.8 milliseconds

Integration Time Range

0.2 to 25.0 milliseconds (in steps of 0.2)

Blackbody

Temperature Range

< 400 K

Temperature Stability

 \pm 0.1 K over 10 minutes

- Temperature Repeatability

 \pm 0.2 K from cycle to cycle

- Emissivity Stability

 \pm 0.5 % over its life

FPA AND QWIPettes

Focal Plane Bridge

- Masked Area
- Mount QWIPettes
- Thermal Interface

 $^{1}/_{3}$ to $^{1}/_{4}$ of array over the FPA (consistent illumination) thermally integrated with motherboard

QWIPettes

- Same detector material as FPA (wavelength, response, dark current, etc.)
- A pair of 200 μm detectors illuminated (increases output signal)
- Four 200 μm detectors coated with opaque material for dark current signal

DEWAR DESIGN

- QWIP Focal Plane Array is 128 x 128
 - 30 to 40 rows are shaded by the "bridge"
 - 5 to 10 rows are in "transition", i.e. partially shaded
 - Remainder of focal plane is illuminated by the blackbody

QWIPette DESIGN

• QWIPette Objective:

 Measure dark current and photo current with discrete readout circuits (much more radiation tolerant than ROIC)

Dark Current Measurement

- Four detectors are wired in parallel to increase signal to noise ratio, provide larger current into readout circuit
- Dark detectors coated with opaque epoxy

Photo Current Measurement

 Two detectors are wired in parallel to increase signal to noise ratio, the two detectors have gratings most similar to QWIP arrays

• Temperature Uniformity

 Design ensures both parts of the QWIPettes are at the same temperature

Top View

Side View

OPERATIONAL SCENARIO

- Data Collection Scenario
 - Collect 40 frames of Focal Plane Data
 - Collect 4 frames of data from the ROIC with FPA unbiased
 - Collect 4 frames of data from the FPA at 800 µsec and 2 diode reads at 40Hz while viewing ambient conditions (Ambient frames).
 - Turn on blackbody (BB) to T1 (~320K)
 - Collect 14 frames of data from the FPA at 800 µsec and 16 diode reads at 40Hz while viewing the BB at T1 (Data frames).
 - Switch BB to T2 (~380K).
 - Collect 14 frames of data from the FPA at 800 µsec and 16 diode reads at 40Hz while viewing the BB at T2 only (Data frames).
 - · Switch BB off.
 - Collect 4 frames of data from the FPA at 800 µsec and 2 diode reads at 40Hz while viewing ambient conditions (Ambient frames).

OPERATION TIMELINE

